79 research outputs found

    Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling

    Get PDF
    This study demonstrates the potential for applying passive microwave satellite sensor data to infer the discharge dynamics of large river systems using the main stem Amazon as a test case. The methodology combines (1) interpolated ground-based meteorological station data, (2) horizontally and vertically polarized temperature differences (HVPTD) from the 37-GHz scanning multichannel microwave radiometer (SMMR) aboard the Nimbus 7 satellite, and (3) a calibrated water balance/water transport model (WBM/WTM). Monthly HVPTD values at 0.25° (latitude by longitude) resolution were resampled spatially and temporally to produce an enhanced HVPTD time series at 0.5° resolution for the period May 1979 through February 1985. Enhanced HVPTD values were regressed against monthly discharge derived from the WBM/WTM for each of 40 grid cells along the main stem over a calibration period from May 1979 to February 1983 to provide a spatially contiguous estimate of time-varying discharge. HVPTD-estimated flows generated for a validation period from March 1983 to February 1985 were found to be in good agreement with both observed arid modeled discharges over a 1400-km section of the main stem Amazon. This span of river is bounded downstream by a region of tidal influence and upstream by low sensor response associated with dense forest canopy. Both the WBM/WTM and HVPTD-derived flow rates reflect the significant impact of the 1982–1983 El Niño-;Southern Oscillation (ENSO) event on water balances within the drainage basin

    Flexible operation of post-combustion CO2 capture at pilot scale with demonstration of capture-efficiency control using online solvent measurements

    Get PDF
    Flexible post-combustion carbon capture and storage (CCS) has the potential to play a significant part in the affordable decarbonisation of electricity generation portfolios. PCC plant operators can modify capture plant process variables to adjust the CO2 capture level to a value which is optimal for current fuel cost, electricity selling price and CO2 emissions costs, increasing short-term profitability. Additionally, variation of the level of steam extraction from the generation plant can allow the capture facility to provide additional operating flexibility for coal-fired power stations which are comparatively slow to change output. A pilot-scale test campaign investigates the response of plant operating parameters to dynamic scenarios which are designed to be representative of pulverized coal plant operation. Online sensors continuously monitor changes in rich and lean solvent CO2 loading (30%wt monoethanolamine). Solvent loading is likely to be a critical control variable for the optimisation of flexible PCC operation, and since economic and operational boundaries can change on timescales 30mins or shorter, the development of methods for rapid, continuous online solvent analysis is key. Seven dynamic datasets are produced and insights about plant response times and hydrodynamics are provided. These include power output maximization, frequency response, power output ramping and a comparison between two plant start-up strategies. In the final dynamic operating scenario, control of CO2 capture efficiency for a simple reboiler steam decoupling and reintroduction event is demonstrated using only knowledge of plant hydrodynamics and continuous measurement of solvent lean loading. Hot water flow to the reboiler is reduced to drop the capture efficiency. The “target” value for the minimum capture efficiency in the scenario was set at 30%, but a minimum CO2 capture efficiency of 26.4% was achieved. While there remains scope for improvement this represents a significant practical step towards the control of capture plant using online solvent concentration and CO2 measurements, and the next steps for its further development are discussed

    Policy making under uncertainty in electric vehicle demand

    Get PDF
    The introduction of electric vehicles (EVs) into the passenger vehicle market has, in recent years, become viewed as a primary solution to the significant carbon dioxide emissions attributed to personal mobility. Moreover, EVs offer a means by which energy diversification and efficiency can be improved compared to the current system. The UK government and European Commission have played an active role in steering the development and market introduction of EVs. However, a great deal of uncertainty remains regarding the effectiveness of these policies and the viability of EV technology in the mainstream automotive market. This paper investigates the prevalence of uncertainty concerning the demand for EVs. This is achieved through the application of a conceptual framework that assesses the locations of uncertainty. UK and EU documents are assessed through a review of the published policy alongside contributions from academia to determine how uncertainty has been reduced. This assessment offers insights to decision makers in this area by evaluating the work done to date through a landscape analysis. Results have identified six different locations of uncertainty covering: consumer, policy, infrastructure, technical, economic and social issues

    Strategic risk appraisal. Comparing expert- and literature-informed consequence assessments for environmental policy risks receiving national attention

    No full text
    Strategic risk appraisal (SRA) has been applied to compare diverse policy level risks to and from the environment in England and Wales. Its application has relied on expert-informed assessments of the potential consequences from residual risks that attract policy attention at the national scale. Here we compare consequence assessments, across environmental, economic and social impact categories that draw on ‘expert’- and ‘literature-based’ analyses of the evidence for 12 public risks appraised by Government. For environmental consequences there is reasonable agreement between the two sources of assessment, with expert-informed assessments providing a narrower dispersion of impact severity and with median values similar in scale to those produced by an analysis of the literature. The situation is more complex for economic consequences, with a greater spread in the median values, less consistency between the two assessment types and a shift toward higher severity values across the risk portfolio. For social consequences, the spread of severity values is greater still, with no consistent trend between the severities of impact expressed by the two types of assessment. For the latter, the findings suggest the need for a fuller representation of socioeconomic expertise in SRA and the workshops that inform SRA output

    Score a goal for climate: Assessing the carbon footprint of travel patterns of the English Premier League clubs

    Get PDF
    Football is the most popular sport, globally and in the United Kingdom. However it generates a range of negative environmental impacts, such as climate change, due to an extensive amount of travel involved. The growing contribution of football clubs to the global carbon footprint has been recognised, but never consistently assessed. This study assesses the carbon footprint of the English Premier League (EPL)clubs, using the patterns of their domestic travel in the 2016/2017 season as a proxy for analysis. The study shows that, within the 2016/17 season, the EPL clubs produced circa 1134 tonnes of CO 2- eq. as a result of their travel, where transportation accounts for 61% of the carbon footprint. To reduce this carbon footprint, a careful review of the current corporate travel and procurement practices in the EPL clubs is necessary. This is in order to optimise the travel itineraries, prioritise more climate-benign modes of transport and contract budget accommodation providers with the ‘green’ credentials
    • 

    corecore